Electroporation of Planar Lipid Bilayers and Membranes

نویسندگان

  • Mojca Pavlin
  • Tadej Kotnik
  • Damijan Miklavčič
  • Peter Kramar
  • Alenka Maček Lebar
چکیده

Strong external electric field can destabilize membranes and induce formation of pores thus increasing membrane permeability. The phenomenon is known as membrane electroporation, sometimes referred to also as dielectric breakdown or electropermeabilization. The structural changes involving rearrangement of the phospholipid bilayer presumably lead to the formation of aqueous pores, which increases the conductivity of the membrane and its permeability to water-soluble molecules which otherwise are deprived of membrane transport mechanisms. This was shown in variety of experimental conditions, on artificial membranes such as planar lipid bilayers and vesicles, as well as on biological cells in vitro and in vivo. While studies of electroporation on artificial lipid bilayers enabled characterization of the biophysical processes, electroporation of biological cells led to the development of numerous biomedical applications. Namely, cell electroporation increases membrane permeability to otherwise nonpermeant molecules, which allows different biological and medical applications including transfer of genes (electrogene transfer), transdermal drug delivery and electrochemotherapy of tumors. In general, the key parameter for electroporation is the induced transmembrane voltage generated by an external electric field due to the difference in the electric properties of the membrane and the external medium, known as Maxwell–Wagner polarization. It was also shown that pore formation and the effectiveness of cell electroporation depend on parameters of electric pulses like number, duration, repetition frequency and electric field strength, where the later is the crucial parameter since increased transmembrane transport due to electroporation is only observed above a certain threshold field. Two main theoretical approaches were developed to describe electroporation. The electromechanical approach considers membranes as elastic or viscoelastic bodies, and applying principles of electrostatics and elasticity predict membrane rupture above critical membrane voltage. A conceptually different approach describing formation and expansion of pores is based on energy consideration; it is assumed that external electric field reduces the free energy barrier for formation of hydrophilic pores due to lower polarization energy of water in the pores compared to the membrane. Combined with stochastic mechanism of pores expansion it can describe experimental data of bilayer membranes. Still, the molecular mechanisms of pore formation and stabilization during electroporation are not fully understood and rigorous experimental conformation of different theories is still lacking. The focus of this chapter is to review experimental and theoretical data in the field of electroporation and to connect biophysical aspects of the process with the phenomenological experimental observations obtained on planar lipid bilayers, vesicles and cells. Electroporation of Planar Lipid Bilayers and Membranes 167

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence of Conducting Hydrophobic Nanopores Across Membranes in Response to an Electric Field

Electroporation, the application of electric fields to alter the permeability of biological membranes, has recently become a clinical tool for the electrochemotherapy treatment of various cancers. Current electroporation theory assumes that the membrane is permeabilized through the formation of conducting hydrophilic pores, stabilized by rearrangement of lipid head groups. Here we have performe...

متن کامل

Characterization of biophysical properties of single chloride channel in rat brain mitochondrial inner membrane by channel incorporation into bilayer lipid membrane

Introduction: Recent studies have shown the presence of Cl- channels in heart and liver mitochondrial membranes. In this work, we have characterized the functional profile of a Cl- channel from rat brain mitochondria. Methods: After removing and homogenizing the rat brain, the supernatant was separately centrifuged in MSEdigitonin, H2O and Na2CO3 and mitochondrial inner membrane vesicles wer...

متن کامل

Stochastic model for electric field-induced membrane pores. Electroporation.

Electric impulses (1-20 kV cm-1, 1-5 microseconds) cause transient structural changes in biological membranes and lipid bilayers, leading to apparently reversible pore formation ( electroporation ) with cross-membrane material flow and, if two membranes are in contact, to irreversible membrane fusion ( electrofusion ). The fundamental process operative in electroporation and electrofusion is tr...

متن کامل

Electroporation threshold of POPC lipid bilayers with incorporated polyoxyethylene glycol (C12E8).

Electroporation relates to a phenomenon in which cell membranes are permeabilized after being exposed to high electric fields. On the molecular level, the mechanism is not yet fully elucidated, although a considerable body of experiments and molecular dynamic (MD) simulations were performed on model membranes. Here we present the results of a combined theoretical and experimental investigation ...

متن کامل

Inter-pulse interval between rectangular voltage pulses affects electroporation threshold of artificial lipid bilayers.

This paper describes experiments that determine how the inter-pulse interval between rectangular pulses in a train of pulses alters the threshold of electroporation of 1-pamitoyl 2-oleoyl phosphatidycholine bilayer lipid membranes. The bilayers were exposed to a train of sixteen 100-micros duration pulses. Threshold voltage and the sequence number of the pulse in the train, where onset of the e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007